Extragradient method for convex minimization problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extragradient-Based Alternating Direction Method for Convex Minimization

In this paper, we consider the problem of minimizing the sum of two convex functions subject to linear linking constraints. The classical alternating direction type methods usually assume that the two convex functions have relatively easy proximal mappings. However, many problems arising from statistics, image processing and other fields have the structure that only one of the two functions has...

متن کامل

The Newton Bracketing Method for Convex Minimization

An iterative method for the minimization of convex functions f : R → R, called a Newton Bracketing (NB) method, is presented. The NB method proceeds by using Newton iterations to improve upper and lower bounds on the minimum value. The NB method is valid for n = 1, and in some cases for n > 1 (sufficient conditions given here). The NB method is applied to large scale Fermat–Weber location probl...

متن کامل

Alternating Proximal Gradient Method for Convex Minimization

In this paper, we propose an alternating proximal gradient method that solves convex minimization problems with three or more separable blocks in the objective function. Our method is based on the framework of alternating direction method of multipliers. The main computational effort in each iteration of the proposed method is to compute the proximal mappings of the involved convex functions. T...

متن کامل

Approximate Level Method for Nonsmooth Convex Minimization

In this paper, we propose and analyse an approximate variant of the level method of Lemaréchal, Nemirovskii and Nesterov for minimizing nonsmooth convex functions. The main per-iteration work of the level method is spent on (i) minimizing a piecewise-linear model of the objective function and (ii) projecting onto the intersection of the feasible region and a level set of the model function. We ...

متن کامل

Geometric Descent Method for Convex Composite Minimization

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh [5] to solving nonsmooth and strongly convex composite problems. We prove that the resulting algorithm, GeoPG, converges with a linear rate (1− 1/√κ), thus achieves the optimal rate among first-order methods, where κ is the condition number of the problem. Numerical results on linear regression and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2014

ISSN: 1029-242X

DOI: 10.1186/1029-242x-2014-444